4.7 Article

In situ observations of reacting Al/Fe2O3 thermite: Relating dynamic particle size to macroscopic burn time

Journal

COMBUSTION AND FLAME
Volume 201, Issue -, Pages 252-263

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2018.12.021

Keywords

Thermite; Aluminum; Iron oxide; Particle size; Burn time

Funding

  1. LLNL Laboratory-Directed Research and Development program [16-FS-028]
  2. DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]
  3. U.S. DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]

Ask authors/readers for more resources

Time-resolved x-ray imaging is used to capture high-resolution images of the Al/Fe2O3 thermite reaction as it proceeds in an extended burn tube. The observed thermite reaction products are generally large, multi-phase composite particles. Image processing algorithms are developed to extract a continuous record of composite particle size as a function of time and distance from the ignition point. Small particles are observed immediately after ignition, followed by a rapid increase in particle size and a gradual decline toward late times. Correlating the dynamic particle size with visible light emission from the reaction, we propose a two-stage mechanism where the combination of early ignition and delayed expansion causes the material closest to the ignition point to undergo substantial coalescence before it begins moving down the tube. We also identify two mechanisms that may contribute to particle size refinement at late times, both based on the collapse of large gas bubbles that are observed preferentially in particles at earlier times. A new approach to extracting burn times from luminous intensity data is explored, and we find that a more nuanced analysis of burn time and luminous intensity may help to improve reactivity assessments when data from in situ studies is unavailable. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available