4.7 Article

Insights into engine autoignition: Combining engine thermodynamic trajectory and fuel ignition delay iso-contour

Journal

COMBUSTION AND FLAME
Volume 200, Issue -, Pages 207-218

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2018.11.025

Keywords

Autoignition; Advanced compression ignition (ACI); Octane rating; Octane sensitivity; Livengood-Wu method; Phi-sensitivity

Funding

  1. US Department of Energy Office of Energy Efficiency and Renewable Energy and Bioenergy Technologies and Vehicle Technologies Offices [DE-EE0007985]

Ask authors/readers for more resources

One of the ultimate goals of chemical kinetic study is to understand and predict autoignition in engines. In this study, utilizing toluene primary reference fuels (TPRF) as a gasoline surrogate and a recently developed multicomponent gasoline kinetic mechanism, we have demonstrated a general approach to analyze autoignition in arbitrary spark-ignition (SI) and advanced compression ignition (ACI) engine conditions by combining thermodynamic pressure-temperature trajectory and the fuel ignition delay iso-contours. This method allows direct evaluation of controlling chemistry, potential involvement of low temperature heat release, and the dependence of autoignition to conventional fuel metrics (research and motor octane rating, i.e., RON and MON, and octane sensitivity OS=RON-MON) and engine operating conditions such as equivalence ratio, exhaust gas recirculation (EGR) ratio and engine intake conditions. Applying the analysis to the pressure-temperature trajectories of the conventional RON and MON tests, as well as those beyond RON and beyond MON, distinct roles of conventional gasoline fuel metrics and engine operating parameters are identified for all representative engine conditions. By comparing the autoignition behavior in ACI and SI engine conditions, the knowledge obtained from SI engine knock cannot be directly transferred to ACI bulk combustion phasing control in general, due to the different mixture equivalence ratios and the associated differences in reactivity and its dependence. This method could be extended to generate an auto-ignition map for arbitrary fuels and arbitrary engine trajectories, and the useful insights and overall evaluations can be used to complement conventional kinetic simulation of engine cycles. (C) 2018 The Authors. Published by Elsevier Inc. on behalf of The Combustion Institute. This is an open access article under the CC BY-NC-ND license.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available