4.7 Article

A new catechol-functionalized polyamidoamine as an effective SPION stabilizer

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 174, Issue -, Pages 260-269

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2018.11.007

Keywords

SPION; Polyamidoamine; Ligand exchange; Relaxivity

Funding

  1. University degli Studi di Milano
  2. Regione Lombardia - Fondazione Cariplo joint SmartMatLab Project [2013-1766]

Ask authors/readers for more resources

A synthetic strategy was established for decorating and stabilizing superparamagnetic iron oxide nanoparticles (SPIONs) with a zwitterionic linear polyamidoamine (PAA). The strategy was successfully tested with a PAA coded ISA23 previously found endowed with interesting biological properties, such as biocompatibility, degradability in aqueous media and stealth-like properties when injected in test animals. A post-synthetic functionalization with catechol-bearing moieties of a preformed PAA was successfully carried out. ISA23 was obtained by polyaddition reactions of methyl-piperazine and 2,2-bis(acrylamidoacetic) acid. It was functionalized using nitrodopamine and 1-ethyl-3-(3-dimethylaminopropyl)carbodiirnide as coupling agent, to randomly form amide bonds with 17% of ISA23 carboxylic groups (ISA23-ND). SPIONs were prepared by a thermal decomposition synthesis in 1-octadecene with oleic acid, and then transferred in water by two distinct ligand exchange procedures: i) the direct displacement of oleate molecules from SPION surface by ISA23 in a biphasic (n-hexane/water) environment; ii) the two-step method involving an intermediate small molecule, tetramethylammonium hydroxide, used as a transient transfer agent, which was in turn exchanged with ISA23-ND in a second exchange step occurring in water. The two-step procedure provided a SPION@PAA nanocomposite more stable than that obtained by the one-step procedure in the presence of an applied external magnetic field. ATR-FTIR spectroscopy, zeta-potential and thermogravimetric analysis (TGA) showed the presence of the ISA23 on the SPION surface. In particular, TGA showed that the ISA23-ND amount on the NPs accounted for 26% of the overall nanocomposite mass. The nanocomposite size was determined by both TEM (21.1 +/- 2.9 nm) and DLS measurements (hydrodynamic size 100 +/- 28 nm). SPION@ISA23-ND were re-suspended after lyophilization reverting to their pristine dimensions. The SPION@ISA23-ND adsorption of BSA in water, considered as the first stage of phagocytosis, was very low, suggesting that ISA23 could impart stealthiness to SPION@ISA23-ND. H-1-NMR relaxivity measurements showed an r(2) value of 158 s(-1) mmol(-1) L (vs 100 s(-1) mmol(-1) L for Endorem (R)) at relevant clinical fields for magnetic resonance imaging (from 0.2 to 1.5 T). SPION@ISA23-ND was tested on HeLa cells and their internalization was visualized by reflectance microscopy. Finally, with the aim of prepare a new dual magneto-optical system, a synthetic procedure to decorate SPION@ISA23-ND with a fluorescent dye was devised, even though the emission intensity of the resultant conjugate was lower than expected, possibly due to luminescence quenching caused by the closeness of emitting moieties to the SPION surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available