4.7 Article

Disturbance of energetic homeostasis and oxidative damage provoked by trichlorfon as relevant toxicological mechanisms using silver catfish as experimental model

Journal

CHEMICO-BIOLOGICAL INTERACTIONS
Volume 299, Issue -, Pages 94-100

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cbi.2018.11.015

Keywords

Adenosine triphosphate; ATPase; Gills; Liver; Phosphoryl transfer network

Funding

  1. Brazilian National Council for Scientific and Technological Development (CNPq)
  2. CNPq research fellowship
  3. Coordination for the Improvement of Higher Education Personnel (CAPES)

Ask authors/readers for more resources

Recent evidences have suggested the involvement of phosphoryl transfer, catalyzed by creatine kinase (CK), adenylate kinase (AK) and pyruvate kinase (PK), to metabolic alterations and impairment of bioenergetics homeostasis linked to adenosine triphosphate (ATP) production, and utilization during exposure to pesticides. It is recognized that sublethal concentrations of trichlorfon alter hepatic and branchial metabolism, but the pathways involved in this process remains unknown. Thus, the aim of this study was to evaluate whether phosphoryl transfer network can be a pathway involved in the hepatic and branchial metabolic alterations during exposure to sublethal concentrations of trichlorfon. Hepatic and branchial CK (cytosolic and mitochondrial isoforms) and PK activities were inhibited after 48 h of exposure to 11 and 22 mg/L trichlorfon compared to control group, while AK activity did not differ between groups. In addition, sodium-potassium pump (Na+, K+-ATPase) activity was lower after 48 h of exposure to 22 mg/L trichlorfon compared to control group. Thiobarbituric acid reactive substances (TBARS) were higher in liver samples after 24 h of exposure to 22 mg/L trichlorfon compared to control group, as well as after 48 h of exposure to 11 and 22 mg/L trichlorfon in liver and gills. Finally, hepatic and branchial non-protein thiol (NPSH) levels were lower after 48 h of exposure to 11 and 22 mg/L trichlorfon. All evaluated parameters did not recover after 48 h in clean water. Based on these evidence, the impairment of phosphoryl transfer network can be considered a pathway involved in the hepatic and branchial metabolic alterations during exposure to sublethal concentrations of trichlorfon. Moreover, alterations on CK and PK activities provoke an impairment on Na+, K+-ATPase activity, which can be mediated by lipid oxidative damage and reduction of NPSH content.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available