4.8 Review

Tuning the Luminescence of Layered Halide Perovskites

Journal

CHEMICAL REVIEWS
Volume 119, Issue 5, Pages 3104-3139

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.8b00477

Keywords

-

Funding

  1. National Science Foundation (NSF) CAREER award [DMR-1351538]
  2. Department of Energy, Laboratory Directed Research and Development program at SLAC National Accelerator Laboratory [DE-AC02-76SF00515]
  3. Alfred P. Sloan fellowship
  4. Stanford University
  5. Center for Molecular Analysis and Design (CMAD) at Stanford University
  6. NSF [DGE-114747]

Ask authors/readers for more resources

Layered halide perovskites offer a versatile platform for manipulating light through synthetic design. Although most layered perovskites absorb strongly in the ultraviolet (UV) or near-UV region, their emission can range from the UV to the infrared region of the electromagnetic spectrum. This emission can be very narrow, displaying high color purity, or it can be extremely broad, spanning the entire visible spectrum and providing high color rendition (or accurately reproducing illuminated colors). The origin of the photoluminescence can vary enormously. Strongly correlated electron-hole pairs, permanent lattice defects, transient light-induced defects, and ligand-field transitions in the inorganic layers and molecular chromophores in the organic layers can be involved in the emission mechanism. In this review, we highlight the different types of photoluminescence that may be attained from layered halide perovskites, with an emphasis on how the emission may be systematically tuned through changes to the bulk crystalline lattice: changes in composition, structure, and dimensionality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available