4.3 Article

Micheliolide Protects Against Doxorubicin-Induced Cardiotoxicity in Mice by Regulating PI3K/Akt/NF-kB Signaling Pathway

Journal

CARDIOVASCULAR TOXICOLOGY
Volume 19, Issue 4, Pages 297-305

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12012-019-09511-2

Keywords

Akt; Doxorubicin-induced cardiotoxicity; Micheliolide; NF-kB; PI3K

Funding

  1. Student Research Committee, Tabriz University of Medical Sciences

Ask authors/readers for more resources

Micheliolide (MCL) is a naturally derived anti-inflammatory agent. In the present investigation, we examined the protective potential of MCL against doxorubicin (DOX)-induced cardiotoxicity in mice. Mice were injected with a single 15-mg/kg intraperitoneal dose of DOX at day 1 and the study groups received daily 12.5, 25, and 50 mg/kg doses of MCL for 7 days. Cardiac histopathology, cardiac function, serum markers of cardiac injury, and tissue markers of inflammation, and oxidative stress were examined. MCL decreased serum levels of creatinine kinase MB (CK-MB) and cardiac troponin I (cTnI) levels, ameliorated cardiac tissue architecture, and improved cardiac stroke volume. Apart from reducing the activities of NF-kB p65 subunit, MCL attenuated the cardiac levels of PI3K, phosphorylated (p)-Akt, p-Bad, and caspase-3 levels and simultaneously elevated p-PTEN levels. While the gene expressions of tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) were decreased, the tissue activities of superoxide dismutase (SOD) as well as gene expressions of heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase-1 (NQO1) were increased after treatment with MCL. Furthermore, tissue levels of malondialdehyde (MDA) were also decreased. Collectively, these findings point to the protective effects of MCL against DOX-induced cardiotoxicity by regulating PI3K/Akt/NF-kB signaling pathway in mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available