4.6 Article

Geotechnical and hydrological characterization of hillslope deposits for regional landslide prediction modeling

Journal

BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
Volume 78, Issue 7, Pages 4875-4891

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10064-018-01449-z

Keywords

Soil geotechnics; Morphometric analysis; Physically based modeling; Shallow landslides; Tuscany

Funding

  1. Department of Earth Sciences (on behalf of the Centro Interuniversitario di Scienze del Territorio) - University of Florence
  2. Regional Administration of Tuscany

Ask authors/readers for more resources

We attempt a characterization of the geotechnical and hydrological properties of hillslope deposits, with the final aim of providing reliable data to distributed catchment-scale numerical models for shallow landslide initiation. The analysis is based on a dataset built up by means of both field tests and laboratory experiments over 100 sites across Tuscany (Italy). The first specific goal is to determine the ranges of variation of the geotechnical and hydrological parameters that control shallow landslide-triggering mechanisms for the main soil classes. The parameters determined in the deposits are: grain size distribution, Atterberg limits, porosity, unit weight, in situ saturated hydraulic conductivity and shear strength parameters. In addition, mineral phases recognition via X-ray powder diffraction has been performed on the different soil types. The deposits mainly consist of well-sorted silty sands with low plastic behavior and extremely variable gravel and clay contents. Statistical analyses carried on these geotechnical and hydrological parameters highlighted that it is not possible to define a typical range of values only with relation to the main mapped lithologies, because soil characteristics are not simply dependent on the bedrock type from which the deposits originated. A second goal is to explore the relationship between soil type (in terms of grain size distribution) and selected morphometric parameters (slope angle, profile curvature, planar curvature and peak distance). The results show that the highest correlation between soil grain size classes and morphometric attributes is with slope curvature, both profile and planar.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available