4.6 Article

Diagnostic Performance of a Novel Three-Dimensional Neuroretinal Rim Parameter for Glaucoma Using High-Density Volume Scans

Journal

AMERICAN JOURNAL OF OPHTHALMOLOGY
Volume 169, Issue -, Pages 168-178

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ajo.2016.06.028

Keywords

-

Categories

Funding

  1. AMERICAN GLAUCOMA SOCIETY MID-CAREER AWARD (SAN FRANCISCO, CALIFORNIA)
  2. Massachusetts Lions Eye Research Fund (Boston, Massachusetts)
  3. Fidelity Charitable Fund (Harvard University, Boston, Massachusetts)
  4. Harvard Catalyst Grant (National Institutes of Health, Bethesda, Maryland) [UL RR025758]
  5. Center for Biomedical OCT Research and Translation (National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland) [P41 EB015903]

Ask authors/readers for more resources

PURPOSE: To evaluate the diagnostic performance of a 3-dimensional (3D) neuroretinal rim parameter, the minimum distance band (MDB), using optical coherence tomography (OCT) high-density volume scans for open-angle glaucoma. DESIGN: Reliability analysis. METHODS: SETTING: Institutional. STUDY POPULATION: Total of 163 patients (105 glaucoma and 58 healthy subjects). OBSERVATION PROCEDURES: One eye of each patient was included. MDB and retinal nerve fiber layer (RNFL) thickness values were determined for 4 quadrants and 4 sectors using a spectral-domain OCT device. MAIN OUTCOME MEASURES: Area under the receiver operating characteristic curve (AUROC) values, sensitivities, specificities, and positive and negative predictive values. RESULTS: The best AUROC values of 3D MDB thickness for glaucoma and early glaucoma were for the overall globe (0.969, 0.952), followed by the inferior quadrant (0.966, 0.949) and inferior -temporal sector (0.966, 0.944), and then followed by the superior-temporal sector (0.964, 0.932) and superior quadrant (0.962, 0.924). All 3D MDB thickness AUROC values were higher than those of 2D RNFL thickness. Pairwise comparisons showed that the diagnostic performance of the 3D MDB parameter was significantly better than 2D RNFL thickness only for the nasal quadrant and inferior-nasal and superior -nasal sectors (P =.023.049). Combining 3D MDB with 2D RNFL parameters provided significantly better diagnostic performance (AUROC 0.984) than most single MDB parameters and all single RNFL parameters. CONCLUSIONS: Compared with the 2D RNFL thickness parameter, the 3D MDB neuroretinal rim thickness parameter had uniformly equal or better diagnostic performance for glaucoma in all regions and was significantly better in the nasal region. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available