4.2 Article

Local ice caps in Finderup Land, North Greenland, survived the Holocene Thermal Maximum

Journal

BOREAS
Volume 48, Issue 3, Pages 551-562

Publisher

WILEY
DOI: 10.1111/bor.12384

Keywords

-

Funding

  1. Arctic Research Centre (ARC), Aarhus University
  2. Villum Young Investigator Programme

Ask authors/readers for more resources

Local glaciers and ice caps (GICs) comprise only similar to 5.4% of the total ice volume, but account for similar to 14-20% of the current ice loss in Greenland. The glacial history of GICs is not well constrained, however, and little is known about how they reacted to Holocene climate changes. Specifically, in North Greenland, there is limited knowledge about past GIC fluctuations and whether they survived the Holocene Thermal Maximum (HTM, similar to 8 to 5 ka). In this study, we use proglacial lake records to constrain the ice-marginal fluctuations of three local ice caps in North Greenland including Flade Isblink, the largest ice cap in Greenland. Additionally, we have radiocarbon dated reworked marine molluscs in Little Ice Age (LIA) moraines adjacent to the Flade Isblink, which reveal when the ice cap was smaller than present. We found that outlet glaciers from Flade Isblink retreated inland of their present extent from similar to 9.4 to 0.2cal. ka BP. The proglacial lake records, however, demonstrate that the lakes continued to receive glacial meltwater throughout the entire Holocene. This implies that GICs in Finderup Land survived the HTM. Our results are consistent with other observations from North Greenland but differ from locations in southern Greenland where all records show that the local ice caps at low and intermediate elevations disappeared completely during the HTM. We explain the north-south gradient in glacier response as a result of sensitivity to increased temperature and precipitation. While the increased temperatures during the HTM led to a complete melting of GICs in southern Greenland, GICs remained in North Greenland probably because the melting was counterbalanced by increased precipitation due to a reduction in Arctic sea-ice extent and/or increased poleward moisture transport.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available