4.6 Article

miRNA-seq analysis of human vertebrae provides insight into the mechanism underlying GIOP

Journal

BONE
Volume 120, Issue -, Pages 371-386

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2018.11.013

Keywords

Glucocorticoid-induced osteoporosis; miRNA; High throughput sequencing; Vertebrae; Human

Funding

  1. GDUPS (2018)
  2. National Natural Science Foundation of China [81674000, 81774338, 81503591]
  3. Special Research Project for the Construction of the National TCM Clinical Research Base of the State Administration of Traditional Chinese Medicine [JDZX2015078]
  4. Excellent Young Scholars Project of China Association of Traditional Chinese Medicine [CACM-2017-QNRC1-01]
  5. China Postdoctoral Science Foundation [2017M610271]
  6. Guangdong Science and Technology Department [2016A020226006, 2014A020221021]
  7. Natural Science Foundation of Guangdong Province [1614050002812, 2014A030310082]
  8. Science and Technology New Star of Guangzhou Pearl river [201710010078]
  9. Scientific Research Project of Traditional Chinese Medicine Bureau of Guangdong Province [20180330134046, 20161136]
  10. Excellent Doctoral Dissertation Incubation Grant of First Clinical School of Guangzhou University of Chinese Medicine [YB201602, YB201702]
  11. Excellent Young Scholars Project of the First Affiliated Hospital of Guangzhou University of Chinese Medicine [2015QN03, 2017QN08, 2017TD08]

Ask authors/readers for more resources

High-throughput sequencing (HTS) was recently applied to detect microRNA (miRNA) regulation in age-related osteoporosis. However, miRNA regulation has not been reported in glucocorticoid-induced osteoporosis (GIOP) patients and the mechanism of GIOP remains elusive. To comprehensively analyze the role of miRNA regulation in GIOP based on human vertebrae and to explore the molecular mechanism, a high-throughput sequencing strategy was employed to identify miRNAs involved in GIOP. Twenty-six patients undergoing spinal surgery were included in this study. Six vertebral samples were selected for miRNA sequencing (miRNA-seq) analysis and 26 vertebral samples were verified by qRT-PCR. Bioinformatics was utilized for target prediction, to investigate the regulation of miRNA-mRNA networks, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Six significantly up-regulated miRNAs (including one novel miRNA) and three significantly down-regulated miRNAs were verified via miRNA-seq and verified in the vertebrae of GIOP patients. Up-regulated miRNAs included hsa-miR-214-5p, hsa-miR-10b-5p, hsa-miR-21-5p, hsa-miR-451a, hsamiR-186-5p, and hsa-miR-novel-chr3_49,413 while down-regulated miRNAs included hsa-let-7f-5p, hsa-let-7a5p, and hsa-miR-27a-3p. Bioinformatics analysis revealed 5983 and 23,463 predicted targets in the up-regulated and down-regulated miRNAs respectively, using the miRanda, miRBase and TargetScan databases. The target genes of these significantly altered miRNAs were enriched to 1939 GO terms and 84 KEGG pathways. GO terms revealed that up-regulated targets were most enriched in actin filament-based processes (BP), anchoring junction (CC), and cytoskeletal protein binding (MF). Conversely, the down-regulated targets were mostly enriched in multicellular organismal development (BP), intracellular membrane-bounded organelles (CC), and protein binding (MF). Top-10 pathway analysis revealed that the differentially expressed miRNAs in GIOP were closely related to bone metabolism-related pathways such as FoxO, PI3K-Akt, MAPK and Notch signaling pathway. These results suggest that significantly altered miRNAs may play an important role in GIOP by targeting mRNA and regulating biological processes and bone metabolism-related pathways such as MAPK, FoxO, PI3K-Akt and Notch signaling, which provides novel insight into the mechanism of GIOP and lays a good foundation for the prevention and treatment of GIOP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available