4.7 Article

The contribution of lipid peroxidation to membrane permeability in electropermeabilization: A molecular dynamics study

Journal

BIOELECTROCHEMISTRY
Volume 125, Issue -, Pages 46-57

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.bioelechem.2018.07.018

Keywords

Electroporation; Oxidized lipids; Permeability; Electrical conductance; Cell membrane; Free energy calculations

Funding

  1. OCCIGEN center [(GENCI-CNRS)] [c2015077461]
  2. Slovenian Research Agency (ARRS) [P2-0249]
  3. COST action [TD1104, STSM-TD1104-270215-057439]
  4. Contrat Etat Plan Region Lorraine 2015-2020 subproject MatDS

Ask authors/readers for more resources

Electroporation or electropermeabilization is a technique that enables transient increase in the cell membrane permeability by exposing cells to pulsed electric field. However, the molecular mechanisms of the long-lived cell membrane permeability, which persists on the minutes time scale after the pulse treatment, remain elusive. Experimental studies have suggested that lipid peroxidation could present a mechanism of this prolonged membrane permeabilization. In this study we make the first important step in quantifying the possible contribution of lipid peroxidation to electropermeabilization. We use free energy calculations to quantify the permeability and conductance of bilayers, containing an increasing percentage of hydroperoxide lipid derivatives, to sodium and chloride ions. We then compare our calculations to experimental measurements on electropermeabilized cells. Our results show that the permeability and conductance increase dramatically by several orders of magnitude in peroxidized bilayers. Yet this increase is not sufficient to reasonably account for the entire range of experimental measurements. Nevertheless, lipid peroxidation might be considered an important mechanism of prolonged membrane permeabilization, if exposure of cells to high voltage electric pulses leads to secondary lipid peroxidation products. Our analysis calls for experimental studies, which will determine the type and amount of lipid per oxidation products in electropermeabilized cell membranes. (C) 2018 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available