4.6 Article

Dopamine stimulates differentiation and migration of cortical interneurons

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2019.03.105

Keywords

Cerebral cortex; Interneuron; Medial ganglionic eminence; Neurotrophin; Substantia nigra; Tangential migration

Funding

  1. JSPS KAKENHI [JP17K07084]
  2. Takeda Science Foundation

Ask authors/readers for more resources

Cortical GABAergic interneurons originate and migrate tangentially from the medial ganglionic eminence (MGE), but its mechanism remains unknown. In this study, we show that dopamine (DA) stimulates the differentiation and migration of cortical interneurons derived from MGE cells. Using immunohisto-chemistry for the DA marker, tyrosine hydroxylase (TH), TH positive axons enter the MGE by E12.5. In E11.5 MGE primary cultures, DA enhances the expression of cortical interneuron marker proteins, such as GAD67 and neuropilinl, via D1 receptor, and also up-regulates D2 receptor. In E14.5 organotypic slice cultures, the migration of MGE cells is occurred in a D2 receptor-dependent manner, whose stimulation increased the synthesis of neurotrophins, in E11.5 MGE primary cultures. Furthermore, TH neurons depletion by 6-hydroxydopamine treatments led to a significant reduction of cortical calbindin positive cells in the cerebral cortex, compared with the controls. Therefore, these results suggest that DA can stimulate the differentiation and migration of cortical interneurons. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available