4.4 Article

FPGA implementation of extended Kalman filter for SOC estimation of lithium-ion battery in electric vehicle

Journal

ASIAN JOURNAL OF CONTROL
Volume 21, Issue 4, Pages 2126-2136

Publisher

WILEY
DOI: 10.1002/asjc.2093

Keywords

equivalent circuit model; fast matrix method; extended Kalman filter; FPGA embedded scheme; state of charge

Ask authors/readers for more resources

A FPGA implementation for a model-based state of charge (SOC) estimation is described in this paper. A Thevenin equivalent circuit model is designed for SOC estimation. The extended Kalman filter (EKF) is designed to complete the SOC estimation, and the error is within 1 % . The FPGA is chosen to achieve realtime SOC estimation. A fast matrix method is proposed to improve the calculation speed of the EKF in FPGA because the EKF algorithm requires many matrix operations. In addition, the embedded system based on the FPGA with a system on a programmable chip (SOPC) technique is built using the Qsys platform in Quartus II. Based on the embedded system, an online testing platform is established to monitor the terminal voltage and load current of the experimental battery in real time; experimental results show that the online SOC estimation is successful. The measurement results show that the FPGA embedded scheme of the EKF allows for successful implementation of the SOC estimation with accuracy and speed. The fast matrix method requires 0.00007 s to implement the SOC estimation and is four times faster than the conventional matrix method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available