4.8 Article

The roles of pyrite for enhancing reductive removal of nitrobenzene by zero-valent iron

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 242, Issue -, Pages 9-18

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2018.09.086

Keywords

Pyrite; Zero valent iron; Reduction; Nitrobenzene; Synergetic effect

Funding

  1. National Natural Science Foundation of China [21477081, 21777103, 21777117]
  2. Shanghai Science and Technology Committee [17DZ1202203]

Ask authors/readers for more resources

Zero-valent iron (ZVI) is a popular reductant that has been successfully applied for remediation of groundwater contaminated with various pollutants, but it still suffers from surface passivation and pH increase in the reaction media. In this study, pyrite, a ubiquitous sulfide mineral in anaerobic environment, was adopted to enhance the reactivity of ZVI for removal of nitrobenzene. The synergetic effect between pyrite and ZVI was observed for nitrobenzene reduction, and the rate constant k(obs) at the initial pH (pH(o)) 6.0 was enhanced by 8.55-23.1 folds due to the presence of pyrite with pyrite/ZVI mass ratio ranging from 1.0 to 6.0. Moreover, nitrobenzene could be removed effectively at pHo ranging from 5.0 to 10.0 in the presence of pyrite, while negligible removal of nitrobenzene by ZVI (0.5 g/L) alone was observed at pH(o) >= 7.0. ZVI sample recovered from the reacted ZVI/pyrite mixture was also more effective for nitrobenzene degradation than pristine ZVI. The mechanism study revealed that pyrite could suppress the pH increase in reaction media, boost the production of reactive Fe2+, and activate the ZVI surface through replacing partially the passive oxide film with iron sulfide (FeS). In particular, the formation of highly reactive FeS@Fe in the reaction system of ZVI/pyrite mixture was proved by XRD, Mossbauer,}CANES, XPS and SEM-EDS analyses, which provides a facile way for in-situ sulfidation of ZVI and for enhancing the removal of contaminants with ZVI technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available