4.7 Article

Histone modifications underlie monocyte dysregulation in patients with systemic sclerosis, underlining the treatment potential of epigenetic targeting

Journal

ANNALS OF THE RHEUMATIC DISEASES
Volume 78, Issue 4, Pages 529-538

Publisher

BMJ PUBLISHING GROUP
DOI: 10.1136/annrheumdis-2018-214295

Keywords

-

Categories

Funding

  1. Dutch Arthritis Foundation (Reuma Nederland) [NR14-3-403]

Ask authors/readers for more resources

Background and objective Systemic sclerosis (SSc) is a severe autoimmune disease, in which the pathogenesis is dependent on both genetic and epigenetic factors. Altered gene expression in SSc monocytes, particularly of interferon (IFN)-responsive genes, suggests their involvement in SSc development. We investigated the correlation between epigenetic histone marks and gene expression in SSc monocytes. Methods Chromatin immunoprecipitation followed by sequencing (ChIPseq) for histone marks H3K4me3 and H3K27ac was performed on monocytes of nine healthy controls and 14 patients with SSc. RNA sequencing was performed in parallel to identify aberrantly expressed genes and their correlation with the levels of H3K4me3 and H3K27ac located nearby their transcription start sites. ChIP-qPCR assays were used to verify the role of bromodomain proteins, H3K27ac and STATs on IFN-responsive gene expression. Results 1046 and 534 genomic loci showed aberrant H3K4me3 and H3K27ac marks, respectively, in SSc monocytes. The expression of 381 genes was directly and significantly proportional to the levels of such chromatin marks present near their transcription start site. Genes correlated to altered histone marks were enriched for immune, IFN and antiviral pathways and presented with recurrent binding sites for IRF and STAT transcription factors at their promoters. IFN alpha induced the binding of STAT1 and STAT2 at the promoter of two of these genes, while blocking acetylation readers using the bromodomain BET family inhibitor JQ1 suppressed their expression. Conclusion SSc monocytes have altered chromatin marks correlating with their IFN signature. Enzymes modulating these reversible marks may provide interesting therapeutic targets to restore monocyte homeostasis to treat or even prevent SSc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available