4.1 Article

Evaluation of protective effect of Lactobacillus acidophilus La-5 on toxicity and colonization of Clostridium difficile in human epithelial cells in vitro

Journal

ANAEROBE
Volume 55, Issue -, Pages 142-151

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.anaerobe.2018.12.004

Keywords

Clostridium difficile; probiotics; Bioactive molecules; Cytotoxicity; Cytopathic; Adhesion

Categories

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. MicroSintesis Inc.

Ask authors/readers for more resources

Clostridium difficile infection is a range of toxin - mediated intestinal diseases that is often acquired in hospitals and small communities in developed countries. The main virulence factors of C. difficile are two exotoxins, toxin A and toxin B, which damage epithelial cells and manifest as colonic inflammation and mild to severe diarrhea. Inhibiting C. difficile adherence, colonization, and reducing its toxin production could substantially minimize its pathogenicity and lead to faster recovery from the disease. This study investigated the efficacy of probiotic secreted bioactive molecules from Lactobacillus acidophilus La-5, in decreasing C. difficile attachment and cytotoxicity in human epithelial cells in vitro. L acidophilus La5 cell-free supernatant (La-5 CFS) was used to treat the hypervirulent C. difficile ribotype 027 culture with subsequent monitoring of cytotoxicity and adhesion. In addition, the effect of pretreating cell lines with La-5 CFS in protecting cells from the cytotoxicity of C. difficile culture filtrate or bacterial cell attachment was examined. La-5 CFS substantially reduced the cytotoxicity and cytopathic effect of C. difficile culture filtrate on HT-29 and Caco-2 cells. Furthermore, La-5 CFS significantly reduced attachment of the C. difficile bacterial cells on both cell lines. It was also found that pretreatment of cell lines with La-5 CFS effectively protected cell lines from cytotoxicity and adherence of C. difficile. Our study suggests that La-5 CFS could potentially be used to prevent and cure C. difficile infection and relapses. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available