4.5 Article

Printed millimeter-wave MIMO-based slot antenna arrays for 5G networks

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.aeue.2018.11.029

Keywords

Millimeter-wave; Ka-band; 5G communications; Slot antenna array; Broadband antenna; MIMO system; EBG reflector

Ask authors/readers for more resources

In this work, a broadband millimeter-wave (mm-wave) multiple-input-multiple-output (MIMO) antenna system for upcoming fifth generation (5G) networks is presented. The MIMO antenna system is two ports and realized using two antenna arrays, aligned in opposite directions. Each array consist of three elements in each, as each element is a simple recognized printed wide-slot antenna proximity excited by microstrip line with a widened tuning stub; manipulated for operating in the Ka-band, which includes the 28 and 38 GHz bands, as potential candidates for 5G communications. An electromagnetic band-gap (EBG) reflector is placed behind the antenna structure toward the feeding network to decrease the backward radiation and improve the front-to-back (F/B) ratio. Results show that the proposed MIMO antenna system with EBG reflector provides wideband impedance bandwidth >27 GHz (from 22.5 to >50 GHz) and good radiation characteristics with a total realized gain up to 11.5 and 10.9 dBi at the two frequencies of interest, respectively. The envelope correlation coefficient (ECC) and diversity gain (DG) were evaluated and showed good MIMO performance. These remarkable features with the benefits of design simplicity and easily expansion to large-scale antenna system make the proposed design suitable for mm-wave communications. (C) 2018 Elsevier GmbH. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available