4.8 Article

Facile Room-Temperature Anion Exchange Reactions of Inorganic Perovskite Quantum Dots Enabled by a Modular Microfluidic Platform

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 29, Issue 23, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201900712

Keywords

anion exchange; continuous nanomanufacturing; in situ characterization; microfluidics; perovskite quantum dots

Funding

  1. UNC Research Opportunities Initiative (UNC-ROI) grant
  2. North Carolina State University
  3. Air Force Office of Scientific Research [FA9550-18-1-0331]
  4. State of North Carolina
  5. National Science Foundation [ECCS-1542015, DMR-1726294]

Ask authors/readers for more resources

In an effort to produce the materials of next-generation photoelectronic devices, postsynthesis halide exchange reactions of perovskite quantum dots are explored to achieve enhanced bandgap tunability. However, comprehensive understanding of the multifaceted halide exchange reactions is inhibited by their vast relevant parameter space and complex reaction network. In this work, a facile room-temperature strategy is presented for rapid halide exchange of inorganic perovskite quantum dots. A comprehensive understanding of the halide exchange reactions is provided by isolating reaction kinetics from precursor mixing rates utilizing a modular microfluidic platform, Quantum Dot Exchanger (QDExer). The effects of ligand composition and halide salt source on the rate and extent of the halide exchange reactions are illustrated. This fluidic platform offers a unique time- and material-efficient approach for studies of solution phase-processed colloidal nanocrystals beyond those studied here and may accelerate the discovery and optimization of next-generation materials for energy technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available