4.8 Article

Engineering Perovskite Nanocrystal Surface Termination for Light-Emitting Diodes with External Quantum Efficiency Exceeding 15%

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 29, Issue 11, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201807284

Keywords

light-emitting diodes; nanocrystal; organic-inorganic hybrid perovskite; surface engineering

Funding

  1. Air Force Office of Scientific Research [FA9550-18-1-0037]
  2. National Natural Science Foundation of China [51872274]

Ask authors/readers for more resources

Hybrid organic-inorganic metal halide perovskites are particularly promising for light-emitting diodes (LEDs) due to their attractive optoelectronic properties such as wavelength tunability, narrow emission linewidth, defect tolerance, and high charge carrier mobility. However, the undercoordinated Pb and halide at the perovskite nanocrystal (NC) surface causes traps and nonradiative recombination. In this work, the external quantum efficiency of iodide-based perovskite LEDs is boosted to greater than 15%, with an emission wavelength at 750 nm, by engineering the perovskite NC surface stoichiometry and chemical structure of bulky organoammonium ligands. To the stoichiometric precursor solution for the 3D bulk perovskite, 20% molar ratio of methylammonium iodide is added in addition to 20% excess bulky organoammonium iodide to ensure that the NC surface is organoammonium terminated as the crystal size is decreased to 5-10 nm. This combination ensures minimal undercoordinated Pb and halide on the surface, avoids 2D phases, and acts to provide nanosized perovskite grains which allow for smooth and pinhole-free films. As a result of time-resolved photoluminescence (PL) and PL quantum yield measurements, it is possible to demonstrate that this surface modification increases the radiative recombination rate while reducing the nonradiative rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available