4.8 Article

Ultrahigh Electrical Conductivity of Graphene Embedded in Metals

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 29, Issue 17, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201806792

Keywords

electrical conductivity; graphene; interface; metal matrix composites

Funding

  1. National Key RAMP
  2. D Program of China [2017YFB0406200]
  3. Natural Science Foundation of China [51771110, 51371115, 51671130, 51771111, 51131004]
  4. Shanghai Science AMP
  5. Technology Committee [15JC1402100, 17520712400]
  6. Ministry of Science AMP
  7. Technology of China [2016YFE0130200]
  8. Hitachi Metals Ltd.
  9. International Copper Association

Ask authors/readers for more resources

Highly efficient conductors are strongly desired because they can lead to higher working performance and less energy consumption in their wide range applications. However, the improvements on the electrical conductivities of conventional conductors are limited, such as purification and growing single crystal of metals. Here, by embedding graphene in metals (Cu, Al, and Ag), the trade-off between carrier mobility and carrier density is surmount in graphene, and realize high electron mobility and high electron density simultaneously through elaborate interface design and morphology control. As a result, a maximum electrical conductivity three orders of magnitude higher than the highest on record (more than 3,000 times higher than that of Cu) is obtained in such embedded graphene. As a result, using the graphene as reinforcement, an electrical conductivity as high as =117% of the International Annealed Copper Standard and significantly higher than that of Ag is achieved in bulk graphene/Cu composites with an extremely low graphene volume fraction of only 0.008%. The results are of significance when enhancing efficiency and saving energy in electrical and electronic applications of metals, and also of interest for fundamental researches on electron behaviors in graphene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available