4.8 Article

Fully Solution-Processed Photonic Structures from Inorganic/Organic Molecular Hybrid Materials and Commodity Polymers

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 29, Issue 21, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201808152

Keywords

antireflection coatings; dielectric Bragg reflectors; inorganic; organic hybrid materials; solution-processed photonics

Funding

  1. UK's Engineering and Physical Sciences Research Council (EPSRC) via the Centre for Doctoral Training in Plastic Electronics Materials, PE-CDT [EP/G037515/1]
  2. BASF Schweiz AG
  3. Marie Skodowska-Curie Actions Innovative Training Network [H2020-MSCAITN-2014 INFORM - 675867]
  4. United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel

Ask authors/readers for more resources

Managing the interference effects from thin (multi-)layers allows for the control of the optical transmittance/reflectance of widely used and technologically significant structures such as antireflection coatings (ARCs) and distributed Bragg reflectors (DBRs). These rely on the destructive/constructive interference between incident, reflected, and transmitted radiation. While known for over a century and having been extremely well investigated, the emergence of printable and large-area electronics brings a new emphasis: the development of materials capable of transferring well-established ideas to a solution-based production. Here, demonstrated is the solution-fabrication of ARCs and DBRs utilizing alternating layers of commodity plastics and recently developed organic/inorganic hybrid materials comprised of poly(vinyl alcohol) (PVAl), cross-linked with titanium oxide hydrates. Dip-coated ARCs exhibit an 88% reduction in reflectance across the visible compared to uncoated glass, and fully solution-coated DBRs provide a reflection of >99% across a 100 nm spectral band in the visible region. Detailed comparisons with transfermatrix methods (TMM) highlight their excellent optical quality including extremely low optical losses. Beneficially, when exposed to elevated temperatures, the hybrid material can display a notable, reproducible, and irreversible change in refractive index and film thickness while maintaining excellent optical performance allowing postdeposition tuning, e.g., for thermo-responsive applications, including security features and product-storage environment monitoring.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available