4.7 Article

Changes in phenological sequences of alpine communities across a natural elevation gradient

Journal

AGRICULTURAL AND FOREST METEOROLOGY
Volume 224, Issue -, Pages 11-16

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.agrformet.2016.04.013

Keywords

Timing and duration; Community phenology; Alpine meadow; Climate change; Tibetan plateau

Funding

  1. National Basic Research Program [2013CB956000]
  2. National Science Foundation of China [41230750, 31272488, 31470524]
  3. Strategic Priority Research Program (B) of the Chinese Academy of Sciences [XDB03030403]

Ask authors/readers for more resources

Change in individual species phenology is often unsuitable for predicting change in community phenology because of different responses of different species to temperature change. However, few studies have observed community phenological sequences in the field. Here we explore the changes in timing and duration of the community phenological sequence (i.e. onset of leaf-out (OLO), first flower bud (FB), first flowering (FF), first fruiting-set (FFS), post-fruiting vegetation (OPFV), first leaf-coloring (FLC) and complete leaf-coloring (CLC)) along an elevation gradient from 3200 to 3800 m in an alpine meadow on the Tibetan plateau. Our results indicate that OLO and FFS significantly advanced and other timings of phenological events significantly delayed at 3200 m compared with higher elevations (3600 and 3800 m). The flowering duration of the community was shortest and other phenological durations (except budding stage and post-fruiting vegetation stage) were longest at 3200 m. The duration of the growing season decreased as elevation increased, and the ratio of the durations of the reproductive period and growing season was smallest at 3200 m. There were negative correlations between the proportion of early-spring flowering functional group plants and FB, and the durations of leafing and post-fruiting vegetation of the community. Positive correlations were found between the proportion of mid-summer flowering functional group plants in the community and these variables. There were significant negative correlations between flowering duration of the community and annual mean air temperature and soil moisture. Therefore, our results suggest that different community compositions might respond differently to climate change. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available