4.8 Article

Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials

Journal

ADVANCED MATERIALS
Volume 28, Issue 22, Pages 4203-4218

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201504150

Keywords

-

Funding

  1. [IBS-R006-D1]
  2. Ministry of Science, ICT & Future Planning, Republic of Korea [IBS-R006-D1-2016-A00] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Flexible and stretchable electronics and optoelectronics configured in soft, water resistant formats uniquely address seminal challenges in biomedicine. Over the past decade, there has been enormous progress in the materials, designs, and manufacturing processes for flexible/stretchable system subcomponents, including transistors, amplifiers, bio-sensors, actuators, light emitting diodes, photodetector arrays, photovoltaics, energy storage elements, and bare die integrated circuits. Nanomaterials prepared using top-down processing approaches and synthesis-based bottom-up methods have helped resolve the intrinsic mechanical mismatch between rigid/planar devices and soft/curvilinear biological structures, thereby enabling a broad range of non-invasive, minimally invasive, and implantable systems to address challenges in biomedicine. Integration of therapeutic functional nanomaterials with soft bioelectronics demonstrates therapeutics in combination with unconventional diagnostics capabilities. Recent advances in soft materials, devices, and integrated systems are reviewes, with representative examples that highlight the utility of soft bioelectronics for advanced medical diagnostics and therapies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available