4.3 Article

Autonomous efficient experiment design for materials discovery with Bayesian model averaging

Journal

PHYSICAL REVIEW MATERIALS
Volume 2, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevMaterials.2.113803

Keywords

-

Funding

  1. NSF through the project DMREF: Accelerating the Development of Phase-Transforming Heterogeneous Materials: Application to High Temperature Shape Memory Alloys [NSF-CMMI-1534534]
  2. NSF [NSF-DGE-1545403]
  3. NSF through the project CAREER: Knowledge-driven Analytics, Model Uncertainty, and Experiment Design [NSF-CCF-1553281, NSF-CISE-1835690]
  4. Air Force Office of Scientific Research [AFOSR-FA9550-78816-1-0180]
  5. [NSF-CMMI-1729335]

Ask authors/readers for more resources

The accelerated exploration of the materials space in order to identify configurations with optimal properties is an ongoing challenge. Current paradigms are typically centered around the idea of performing this exploration through high-throughput experimentation/computation. Such approaches, however, do not account for-the always present-constraints in resources available. Recently this problem has been addressed by framing materials discovery as an optimal experiment design. This work augments earlier efforts by putting forward a framework that efficiently explores the materials design space not only accounting for resource constraints but also incorporating the notion of model uncertainty. The resulting approach combines Bayesian model averaging within Bayesian optimization in order to realize a system capable of autonomously and adaptively learning not only the most promising regions in the materials space but also the models that most efficiently guide such exploration. The framework is demonstrated by efficiently exploring the MAX ternary carbide/nitride space through density functional theory (DFT) calculations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available