4.7 Article

Annual Abundance and Population Structure of Two Dung Beetle Species in a Human-Modified Landscape

Journal

INSECTS
Volume 10, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/insects10010002

Keywords

cloud forest; Cormack-Jolly-Seber; mark-recapture; Scarabaeinae; seasonality

Categories

Funding

  1. Mexican National Council for Science and Technology (CONACYT) [589280]
  2. Mexican Agency for International Development Cooperation (AMEXID)
  3. Pacific Alliance [3101416]

Ask authors/readers for more resources

Population studies are essential for understanding different aspects of species' biology, estimating extinction probability, and determining evolutionary and life history. Using the mark-recapture method, we studied the abundance and population structure of dung beetle species (Deltochilum mexicanum and Dichotomius satanas) over one year in a human-modified landscape in Mexico. We captured 1960 individuals with a net recapture rate of 11%. Deltochilum mexicanum had a higher rate of recapture (14%) than Dichotomius satanas (5%). Annual variation in abundance was similar for both species, with maximum abundance occurring in summer and a marked reduction during winter. Deltochilum mexicanum was dominant inside the forest, and its abundance was influenced by vegetation cover, temperature, and humidity. Dichotomius satanas was more frequent outside the forest, and none of the considered environmental variables affected its abundance. The adult sex ratio of Deltochilum mexicanum was female-biased, whereas that of Dichotomius satanas was male-biased. The maximum estimated population size was similar for both species, but Deltochilum mexicanum had a higher number of new individuals and survival rate. Since species with different biological attributes presented a similar pattern of abundance and population structure, we conclude that environmental conditions are the main regulator of dung beetle populations in the human-modified landscape.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available