4.8 Article

Facile Synthesis of 3D Graphene Flowers for Ultrasensitive and Highly Reversible Gas Sensing

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 26, Issue 41, Pages 7462-7469

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201603598

Keywords

-

Funding

  1. West Light Foundation of The Chinese Academy of Sciences
  2. National Natural Science Foundation of China [51402290, 31501084]
  3. National Research Foundation Singapore under Campus for Research Excellence and Technological Enterprise programme

Ask authors/readers for more resources

Fabrication of nanostructured graphene (Gr) for gas sensing applications has become increasingly attractive. For the first time, 3D graphene flowers (GF) cluster patterns are grown directly on an Ni foam substrate by inexpensive homebuilt microwave plasma-enhanced chemical vapor deposition (MPCVD) using the gas mixture H-2/C2H4O2@Ar as a precursor. The interim morphologies of the synthesized GF are investigated and the growth mechanism of the GF film is proposed. The GF are decomposed to few-layer Gr sheets by ultrasonication in ethanol. For the first time, MPCVD-synthesized Gr is exploited to fabricate a gas sensor that exhibits an ultrahigh sensitivity of 133.2 ppm(-1) to NO2. Outstanding sensor responses of 1411% and 101% to 10 ppm and 200 ppb NO2, respectively, are achieved. Furthermore, a low theoretical detection limit of 785 ppt NO2 is achieved. An ultrafast (within 2 s) recovery is observed at room temperature, and an imbedded microheater is employed to improve the selectivity of NO2 detection relative to humidity. This work represents a simple, clean, and efficient route to synthesize large-area cauliflower Gr for gas detection with high performance, including ultrahigh sensitivity, good selectivity, fast recovery, and reversibility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available