4.8 Article

Synergistic Effect of Hybrid PbS Quantum Dots/2D-WSe2 Toward High Performance and Broadband Phototransistors

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 27, Issue 2, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201603605

Keywords

-

Funding

  1. National Natural Science Foundation of China [61306137]
  2. Research Fund for the Doctoral Program of Higher Education [20130142120075]
  3. Fundamental Research Funds for the Central Universities [HUST:2016YXMS032]

Ask authors/readers for more resources

The transitionmetal dichalcogenides-based phototransistors have demonstrated high transport mobility but are limited to poor photoresponse, which greatly blocks their applications in optoelectronic fields. Here, light sensitive PbS colloidal quantum dots (QDs) combined with 2D WSe2 to develop hybrid QDs/2D-WSe2 phototransistors for high performance and broadband photodetection are utilized. The device shows a responsivity up to 2 x 10(5) A W-1, which is orders of magnitude higher than the counterpart of individual material-based devices. The detection spectra of hybrid devices can be extended to near infrared similar to QDs' response. The high performance of hybrid 0D-2D phototransistor is ascribed to the synergistic function of photogating effect. PbS QDs can efficiently absorb the input illumination and 2D WSe2 supports a transport expressway for injected photocarriers. The hybrid phototransistors obtain a specific detectivity over 10(13) Jones in both ON and OFF state in contrast to the depleted working state (OFF) for other reported QDs/2D phototransistors. The present device construction strategy, photogating enhanced performance, and robust device working conditions contain high potential for future optoelectronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available