4.6 Review

Post-Translational Modification and Subcellular Distribution of Rac1: An Update

Journal

CELLS
Volume 7, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/cells7120263

Keywords

Rho GTPases; Rac1; subcellular distribution; nuclear localization; post-translational modification; lipidation; phosphorylation; ubiquitination

Categories

Funding

  1. Canadian Institutes of Health Research (CIHR)
  2. MatCH program of the University of Alberta

Ask authors/readers for more resources

Rac1 is a small GTPase that belongs to the Rho family. The Rho family of small GTPases is a subfamily of the Ras superfamily. The Rho family of GTPases mediate a plethora of cellular effects, including regulation of cytoarchitecture, cell size, cell adhesion, cell polarity, cell motility, proliferation, apoptosis/survival, and membrane trafficking. The cycling of Rac1 between the GTP (guanosine triphosphate)- and GDP (guanosine diphosphate)-bound states is essential for effective signal flow to elicit downstream biological functions. The cycle between inactive and active forms is controlled by three classes of regulatory proteins: Guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). Other modifications include RNA splicing and microRNAs; various post-translational modifications have also been shown to regulate the activity and function of Rac1. The reported post-translational modifications include lipidation, ubiquitination, phosphorylation, and adenylylation, which have all been shown to play important roles in the regulation of Rac1 and other Rho GTPases. Moreover, the Rac1 activity and function are regulated by its subcellular distribution and translocation. This review focused on the most recent progress in Rac1 research, especially in the area of post-translational modification and subcellular distribution and translocation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available