4.6 Article

Transfection with GLS2 Glutaminase (GAB) Sensitizes Human Glioblastoma Cell Lines to Oxidative Stress by a Common Mechanism Involving Suppression of the PI3K/AKT Pathway

Journal

CANCERS
Volume 11, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/cancers11010115

Keywords

GLS2 glutaminase; human glioblastoma; PI3K/AKT signaling pathway; oxidative stress

Categories

Funding

  1. National Science Centre of Poland [2016/23/N/NZ5/01428, 2013/11/D/NZ7/00925, 2017/25/B/NZ7/00388]
  2. Spanish Ministry of Economy and Competitivity [SAF2015-64501-R]
  3. National Leading Research Centre (KNOW-MMRC1) project

Ask authors/readers for more resources

GLS-encoded glutaminase promotes tumorigenesis, while GLS2-encoded glutaminase displays tumor-suppressive properties. In glioblastoma (GBM), the most aggressive brain tumor, GLS is highly expressed and in most cases GLS2 is silenced. Previously, it was shown that transfection with a sequence encoding GAB, the main GLS2 isoform, decreased the survival, growth, and ability to migrate of human GBM cells T98G and increased their sensitivity towards an alkylating agent temozolomide (TMZ) and oxidative stress compared to the controls, by a not well-defined mechanism. In this study we report that GAB transfection inhibits growth and increases susceptibility towards TMZ and H2O2-mediated oxidative stress of two other GBM cell lines, U87MG and LN229. We also show that in GAB-transfected cells treated with H2O2, the PI3K/AKT pathway is less induced compared to the pcDNA-transfected counterparts and that pretreatment with PDGF-BB, an activator of AKT, protects GAB-transfected cells from death caused by the H2O2 treatment. In conclusion, our results show that (i) GAB suppresses the malignant phenotype of the GBM cells of different tumorigenic potentials and genetic backgrounds and (ii) the GAB-mediated increase of sensitivity to oxidative stress is causally related to the inhibition of the PI3K/AKT pathway. The upregulation of the GLS2 expression and the inhibition of the PI3K/AKT pathway may become a novel combined therapeutic strategy for anti-glioma preclinical investigations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available