4.8 Article

Identifying quasi-2D and 1D electrides in yttrium and scandium chlorides via geometrical identification

Journal

NPJ COMPUTATIONAL MATERIALS
Volume 4, Issue -, Pages -

Publisher

SPRINGERNATURE
DOI: 10.1038/s41524-018-0136-1

Keywords

-

Funding

  1. National Natural Science Foundation of China (NSFC) [51201148, U1530402]
  2. Thousand Youth Talents Plan
  3. MEXT Element Strategy Initiative
  4. ACCEL of the Japan Science and Technology Agency in Japan
  5. MEXT KAKEHI [17H06153]
  6. JSPS fellowship for young scientists [18J00745]
  7. High Performance Computing Center of Yanshan University
  8. WRHI program

Ask authors/readers for more resources

Developing and understanding electron-rich electrides offers a promising opportunity for a variety of electronic and catalytic applications. Using a geometrical identification strategy, here we identify a new class of electride material, yttrium/scandium chlorides Y(Sc)(x)Cl-y (y:x < 2). Anionic electrons are found in the metal octahedral framework topology. The diverse electronic dimensionality of these electrides is quantified explicitly by quasi-two-dimensional (2D) electrides for [YCl](+).e-and [ScCl](+).e(-) and one-dimensional (1D) electrides for [Y2Cl3](+).e(-), [Sc7Cl10](+).e(-), and [Sc5Cl8](2+). 2(e-) with divalent metal elements (Sc2+:3d(1) and Y2+:4d(1)). The localized anionic electrons were confined within the inner-layer spaces, rather than inter-layer spaces that are observed in A(2)B-type 2D electrides, e.g. Ca2N. Moreover, when hydrogen atoms are introduced into the host structures to form YClH and Y2Cl3H, the generated phases transform to conventional ionic compounds but exhibited a surprising reduction of work function, arising from the increased Fermi level energy, contrary to the conventional electrides reported so far. Y2Cl3 was experimentally confirmed to be a semiconductor with a band gap of 1.14 eV. These results may help to promote the rational design and discovery of new electride materials for further technological applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available