4.8 Review

Design Strategies toward Enhancing the Performance of Organic Electrode Materials in Metal-Ion Batteries

Journal

CHEM
Volume 4, Issue 12, Pages 2786-2813

Publisher

CELL PRESS
DOI: 10.1016/j.chempr.2018.09.005

Keywords

-

Funding

  1. National Programs for Nano-Key Project [2017YFA0206700]
  2. National Natural Science Foundation of China [21835004]
  3. 111 Project from the Ministry of Education of China [B12015]

Ask authors/readers for more resources

Organic electrode materials have shown great potential for metal-ion batteries because of their high theoretical capacity, flexible structure designability, and environmental friendliness. However, their electrochemical performance still needs to be further enhanced, which mainly depends on the molecular structures, electrode fabrication, electrolyte, and separators. In this review, we present the working principles and fundamental properties of different types of organic electrode materials, including conductive polymers, organosulfur compounds, organic radicals, carbonyl compounds, and other emerging materials. We then focus on the strategies toward enhancing the electrochemical performance (output voltage, capacity, cycling stability, and rate performance) of organic electrode materials in various metal-ion batteries. The key challenges of organic electrode materials for metal-ion batteries mainly contain the high solubility in electrolyte, low intrinsic electronic conductivity, large volume change, and low tap density. This review provides insights into the development of organic electrode materials with high performance for next-generation rechargeable metal-ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available