4.8 Review

Graphene-based integrated photonics for next-generation datacom and telecom

Journal

NATURE REVIEWS MATERIALS
Volume 3, Issue 10, Pages 392-414

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41578-018-0040-9

Keywords

-

Funding

  1. European Union H2020 Graphene Project
  2. European Research Council (ERC) Grant Hetero2D
  3. Engineering and Physical Sciences Research Council (EPSRC) [EP/509 K01711X/1, EP/K017144/1, EP/N010345/1, EP/M507799/5101, EP/L016087/1]
  4. EPSRC [EP/K017144/1, EP/M507799/1, EP/K01711X/1] Funding Source: UKRI

Ask authors/readers for more resources

Graphene is an ideal material for optoelectronic applications. Its photonic properties give several advantages and complementarities over Si photonics. For example, graphene enables both electro-absorption and electro-refraction modulation with an electro-optical index change exceeding 10(-3). It can be used for optical add-drop multiplexing with voltage control, eliminating the current dissipation used for the thermal detuning of microresonators, and for thermoelectric-based ultrafast optical detectors that generate a voltage without transimpedance amplifiers. Here, we present our vision for graphene-based integrated photonics. We review graphene-based transceivers and compare them with existing technologies. Strategies for improving power consumption, manufacturability and wafer-scale integration are addressed. We outline a roadmap of the technological requirements to meet the demands of the datacom and telecom markets. We show that graphene-based integrated photonics could enable ultrahigh spatial bandwidth density, low power consumption for board connectivity and connectivity between data centres, access networks and metropolitan, core, regional and long-haul optical communications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available