4.8 Article

1T-Phase WS2 Protein-Based Biosensor

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 27, Issue 5, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201604923

Keywords

-

Funding

  1. Ministry of Education, Singapore [MOE2013-T2-1-056, ARC 35/13]
  2. National Research Foundation (NRF), Prime Minister's Office, Singapore under the CREATE programme, Singapore-MIT Alliance for Research and Technology (SMART) BioSystems and Micromechanics (BioSyM) IRG
  3. Czech Science Foundation [16-05167S]

Ask authors/readers for more resources

Metallic 1T-phase transition metal dichalcogenides have been recognized for their desirable properties like high surface-to-volume ratio, high conductivity, and capacitive behavior, making them outstanding for catalytic and sensing applications. Herein, a hydrogen peroxide (H2O2) biosensor is constructed by the immobilization of hemoglobin (Hb) on 1T-phase WS2 (1T-WS2) sheets, and entrapment by glutaraldehyde. 1T-WS2 not only displays electrocatalytic activity toward the reduction of H2O2 but also provides a high surface-tovolume ratio and conductive platform for the immobilization of Hb and facilitation of its electron transfer to the electrode surface. The advantageous role of 1T-phase WS2 is further demonstrated for the construction of a heme-based H2O2 biosensor compared to its 1T-phase MoS2, MoSe2, and WSe2 counterparts. Synergistic interactions between 1T-WS2 and Hb result in a H2O2 biosensor with high analytical performance in terms of wide range, sensitivity, selectivity, reproducibility, repeatability, and stability. These findings have profound impact in the research fields of electrochemical sensing and biodiagnostics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available