4.8 Article

1-Ethynyl Ethers as Efficient Thermal Crosslinking System for Hole Transport Materials in OLEDs

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 26, Issue 46, Pages 8505-8513

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201603862

Keywords

-

Funding

  1. German Federal Ministry for Education and Research [03EK3504]

Ask authors/readers for more resources

A new crosslinking concept based on a thermally activated one-component building block with thermally initiated crosslinkable ynol ether is introduced. For polystyrene matrices with glass transition temperatures below the reaction temperature, full conversion is reached within 30 min at 160 degrees C without employing any catalysts or co-reactants. The ynol ethers are chemically inert toward a variety of reaction conditions (e.g., radicals and strong bases) and consequently applicable to a wide range of materials for organic electronics. The crosslinkable solid compounds are bench-stable over more than a year. The broad applicability is demonstrated with a liquid model compound and a specifically designed crosslinking monomer introduced successfully as building block into polystyrenes with pending hole transporting groups. A detailed study of crosslinking kinetics by infrared measurements as well as an alternative method of crosslinker content determination utilizing differential scanning calorimetry is presented. The crosslinkable polymer and the corresponding noncrosslinkable molecule tris(4-(3,6-dibutoxy-9H-carbazol-9-yl)phenyl)amine (BuO(6)TCTA) are synthesized and investigated as hole transport layers (HTLs) in phosphorescent organic light emitting diodes (OLEDs). OLEDs with crosslinked and noncrosslinked HTLs show efficiencies around 80 cd A(-1), indicating negligible influence of the crosslinking process on the device performance while yielding better HTL durability against solvent rinsing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available