4.6 Article

Peptides derived from cadherin juxtamembrane region inhibit platelet function

Journal

ROYAL SOCIETY OPEN SCIENCE
Volume 5, Issue 10, Pages -

Publisher

ROYAL SOC
DOI: 10.1098/rsos.172347

Keywords

E-cadherin; N-cadherin; adherens junctions; juxtamembrane domain; peptides; P120-catenin

Funding

  1. Science Foundation Ireland [08/IN1/B1864]

Ask authors/readers for more resources

The juxtamembrane domains (JMD) of transmembrane proteins are rich in critical peptide sequences that participate in dynamic cell signalling events. Synthetic JMD peptides derived from cadherin cell adhesion proteins have previously been shown to modulate platelet function. In this study, we aimed to develop functional bioactive agents from bioinformatically identified critical peptide sequences. We synthesized overlapping 12-15 amino acid peptides from E- and N-cadherin JMD and assessed their effect on platelet aggregation and platelet ATP secretion. Peptides derived from close to the membrane proximal region inhibit platelet function. Sequential deletion of amino acids from the N- and C-termini of the inhibitory E-cadherin peptides identified the short (KEPLLP763)-E-756 motif as a critical bioactive sequence. Alanine scanning studies further identified that the di-leucine (LL) motif and positively charged lysine (K) are crucial for peptide activity. Moreover, scrambled peptides failed to show any effect on platelet activity. We conclude that peptides derived from JMD of E-cadherin provide potential lead peptides for the development of anti-thrombotic agents and to enable further understanding of the role of cadherins in platelet function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available