4.7 Article

Synthesis of g-C3N4/N-doped CeO2 composite for photocatalytic degradation of an herbicide

Journal

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T
Volume 8, Issue 2, Pages 1628-1635

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmrt.2018.11.008

Keywords

CeO2; Graphitic carbon nitride; Photocatalysis; N doping; Herbicide

Funding

  1. UGC [MRP-6396/16]

Ask authors/readers for more resources

In photocatalysis, surface engineered CeO2 could be vital due to oxygen vacancies arise from multiple valency, i.e. Ce3+ and Ce4+. This study reports photocatalytic properties of g-C3N4/CeO2 composite synthesized by a facile method in the presence of L-arginine. Physicochemical properties of g-C3N4/CeO2 material were analyzed through various characterization techniques such as XRD, UV-Vis, physisorption, etc., and correlated with its photocatalytic activity. Observed bandgap of the synthesized composite material was in the visible region, around 2.8 eV which is less than that of typical ceria, but higher than bandgap of exfoliated g-C3N4. On the further side, N doping into CeO2 was confirmed through XPS analysis. It is estimated that synthesis method aided for the N doping, which further played key role in lowering the bandgap of g-C3N4/CeO2 composite. Finally, Photocatalytic activity of g-C3N4/CeO2 composite was analyzed through degradation of an herbicide i.e. diuron, and the study revealed the good performance of the catalyst. (C) 2018 Brazilian Metallurgical, Materials and Mining Association. Published by Elsevier Editora Ltda.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available