4.6 Article

Air Temperature Characteristics, Distribution, and Impact on Modeled Ablation for the South Patagonia Icefield

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 124, Issue 2, Pages 907-925

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2018JD028857

Keywords

-

Funding

  1. FONDECYT [1171832]
  2. CECs
  3. CONICYT Becas-Chile PhD scholarship program

Ask authors/readers for more resources

The glaciers of Patagonia are the largest in South America and are shrinking rapidly, raising concerns about their contribution to sea level rise in the face of ongoing climatic change. However, modeling studies forecasting future glacier recession are limited by the scarcity of measured on-glacier air temperatures and thus tend to use spatially and temporally constant lapse rates. This study presents 9months of air temperature observations. The network consists of five automatic weather stations and three on-glacier air temperature sensors installed on the South Patagonia Icefield along a transect at 48 degrees 45S. Observed lapse rates are, overall, steeper on the east (-0.0072 degrees C/m) compared to the west (-0.0055 degrees C/m) and vary between the lower section (tongue, ablation zone) and the upper section (plateau, accumulation zone) of the glaciers. Warmer off-glacier temperatures are found in the east compared to the west for similar elevations. However, on-glacier observations suggest that the glacier cooling effect is higher in the east compared to the west. Through application of distributed temperature-index and point-scale energy balance models we show that modeled ablation rates vary by up to 60%, depending on the air temperature extrapolation method applied, and that melt is overestimated and sublimation is underestimated if the glacier cooling effect is not included in the distributed air temperature data. These results can improve current and future modeling efforts of the energy and mass balance of the whole South Patagonia Icefield.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available