4.7 Article

Superelasticity and functional fatigue of single crystalline FeNiCoAlTi iron-based shape memory alloy

Journal

MATERIALS & DESIGN
Volume 160, Issue -, Pages 642-651

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2018.10.003

Keywords

Iron-based shape memory alloy; FeNiCoAlTi; Single crystal; Superelasticity; Functional fatigue; Irrecoverable strains

Funding

  1. National Science Foundation [NSF DMR 1709515]
  2. NSF [CMMI -1333884]
  3. Materials Science and Engineering Research Institute at the American University of Sharjah

Ask authors/readers for more resources

The development of Iron-based shape memory alloys is primarily motivated by the need for a cost-effective alternative to NiTi. This work explores the superelastic and functional fatigue properties of Fe(42.5)Ni(30)Co(15)Al(10)Ti(2.)5 SMA. Single crystalline samples were subjected to various heat treatments to optimize the precipitation content and achieve superelastic response. Precipitation heat treatments between 180 and 200 min at 600 degrees C were conducive to superelasticity with large recoverable strains (similar to 7%) and high levels of recovery (> 95% recovery). Heat treatments at lower temperatures altered the strength but without achieving superelasticity. A phenomenon which was attributed to plastic slip resulting from the critical transformation stress being higher than the slip resistance. Treatment times beyond 200 min induced a brittle response and premature fracture prior to transformation. Cyclic experiments were also conducted following different heat treatments and loading conditions to study the functional fatigue properties. In all cases, limited degradation of superelastic properties took place in the first 10 cycles. However, with continued loading, reduction of superelastic strains and loss of functionality was observed. This was attributed to the gradual buildup of local irrecoverable strains due to plasticity at the martensite boundary which acts to pin the interface and prevent reverse transformation. (C) 2018 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available