4.7 Article Data Paper

Data Descriptor: Combining tensile testing and structural analysis at the single collagen fibril level

Journal

SCIENTIFIC DATA
Volume 5, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sdata.2018.229

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

Ask authors/readers for more resources

Tensile testing to failure followed by imaging is a simple way of studying the structure-function relationship of connective tissues such as skin, tendon, and ligament. However, interpretation of these datasets is complex due to the hierarchical structures of the tissues spanning six or more orders of magnitude in length scale. Here we present a dataset obtained through the same scheme at the single collagen fibril level, the fundamental tensile element of load-bearing tissues. Tensile testing was performed on fibrils extracted from two types of bovine tendons, adsorbed on a glass surface and glued at both ends. An atomic force microscope (AFM) was used to pull fibrils to failure in bowstring geometry. The broken fibrils were then imaged by AFM for morphological characterization, by second harmonic generation microscopy to assess changes to molecular packing, and by fluorescence microscopy after incubation with a peptide probe that binds specifically to denatured collagen molecules. This dataset linking stress-strain curves to post-failure molecular changes is useful for researchers modelling or designing functional protein materials. [GRAPHICS] .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available