4.7 Article

Tuning quantum channels to maximize polarization entanglement for telecom photon pairs

Journal

NPJ QUANTUM INFORMATION
Volume 4, Issue -, Pages -

Publisher

SPRINGERNATURE
DOI: 10.1038/s41534-018-0107-x

Keywords

-

Ask authors/readers for more resources

Quantum networks entangle remote nodes by distributing quantum states, which inevitably suffer from decoherence while traversing quantum channels. Pertinent decoherence mechanisms govern the reach, quality, and rate of distributed entanglement. Hence recognizing, understanding, and modeling those mechanisms is a crucial step in building quantum networks. Here, we study real-life fiber-optic quantum channels that partially filter individual modes of transmitted polarization-entangled states and are capable of introducing dephasing. First, we theoretically model and experimentally demonstrate the combined effect of two independent and arbitrarily oriented polarization-dependent loss elements experienced by each photon of an entangled photon pair. Then, we showcase the compensation of lost entanglement by properly adjusting the channels' properties and discuss the resulting tradeoff between the entanglement quality and rate. Our results provide insights into the robustness of fiber-optic quantum channels, thus taking an important step toward the realization of quantum networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available