4.4 Article

Theoretical investigation on the adsorption and diffusion of lithium-ion on and between graphene layers with size and defect effects

Journal

ADSORPTION SCIENCE & TECHNOLOGY
Volume 34, Issue 2-3, Pages 212-226

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/0263617415623429

Keywords

Lithium-ion; graphene; adsorption; diffusion; energy barrier; defect

Funding

  1. National Natural Science Foundation of China [11372216, 11502167]
  2. National Basic Research Program of China [2012CB937500]
  3. State Key Laboratory for Strength and Vibration of Mechanical Structures of Xi an Jiaotong University [SV2015-KF-13]

Ask authors/readers for more resources

Adsorption and diffusion of lithium-ion on and between graphene layers are investigated by an analytical model, employing a pairwise potential, which can be approximated by the Lennard-Jones potential to express the interaction between lithium-ion and each carbon atom of graphene. The equilibrium position and binding energy of lithium-ion at three particular adsorption sites (hollow, bridge, and top) are calculated, and the adsorption stability is discussed. The results show that hollow site is the most stable adsorption site, and top site is the most unstable. The adsorption and diffusion of lithium-ion on different sizes of monolayer graphene are investigated and proved to be size and edge dependent. Moreover, lithium-ion would rather diffuse on the surface of graphene than through a hexagonal carbon ring to the other side no matter what the graphene sheet size is. In addition, two kinds of vacancy defects in graphene are considered to study the diffusion of lithium-ion. The vacancy defect can improve energy barrier, and if a vacancy defect is big enough, lithium-ion migrating through the vacancy area from one layer to another is feasible. The possible applications of present study include rechargeable lithium-ion graphene battery and Li storage in carbon material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available