4.3 Review

The Role of Inflammatory Cytokines in Cardiac Arrest

Journal

JOURNAL OF INTENSIVE CARE MEDICINE
Volume 35, Issue 3, Pages 219-224

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/0885066618817518

Keywords

cytokines; interleukins; tumor necrosis factor; matrix metalloproteinases; cardiac arrest; post-cardiac arrest syndrome

Funding

  1. Stony Brook Targeted Research Opportunity Grant

Ask authors/readers for more resources

Introduction: Post-cardiac arrest syndrome (PCAS) is characterized by systemic ischemia/reperfusion injury, anoxic brain injury, and post-arrest myocardial dysfunction superimposed on a precipitating pathology. The role of inflammatory cytokines in cardiac arrest remains unclear. Aims: We aimed to describe, with an emphasis on clinical applications, what is known about the role of inflammatory cytokines in cardiac arrest. Data Sources: A PubMed literature review was performed for relevant articles. Only articles in English that studied cytokines in patients with cardiac arrest were included. Results: Cytokines play a crucial role in the pathogenesis of PCAS. Following cardiac arrest, the large release of circulating cytokines mediates the ischemia/reperfusion injury, brain dysfunction, and myocardial dysfunction seen. Interleukins, tumor necrosis factor, and matrix metalloproteinases all play a unique prognostic role in PCAS. High levels of inflammatory cytokines have been associated with mortality and/or poor neurologic outcomes. Interventions to modify the systemic inflammation seen in PCAS continue to be heavily studied. Currently, the only approved medical intervention for comatose patients following cardiac arrest is targeted temperature management. Medical agents, including minocycline and sodium sulfide, have demonstrated promise in animal models. Conclusions: The role of inflammatory cytokines for both short- and long-term outcomes is an important area for future investigation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available