4.6 Article

Cellulose Nanopaper with Monolithically Integrated Conductive Micropatterns

Journal

ADVANCED ELECTRONIC MATERIALS
Volume 5, Issue 3, Pages -

Publisher

WILEY
DOI: 10.1002/aelm.201800924

Keywords

carbon nanotubes; nanocelluloses; nanopapers; nanowires; printed electronics

Funding

  1. Knut and Alice Wallenberg foundation through Wallenberg Wood Science Center

Ask authors/readers for more resources

This work presents a route to fabricate micropatterned conductive structures where the conductors are monolithically integrated with nanocellulose-based paper. To fabricate conductive features, microstructures are patterned on filter papers using wax-printing, followed by vacuum filtration of carbon nanotubes (CNTs) or silver nanowires (AgNWs) dispersed in aqueous cellulose nanofibrils (CNFs). These patterns are then laminated onto a pure CNF substrate (both in gel-state) and dried to form cellulose nanopapers with integrated conductive micropatterns. Resolutions of the conductive features are shown down to 400 mu m wide, 250 nm thick, and with conductivity values of 115 +/- 5 S cm(-1) for the CNF-CNT and 3770 +/- 230 S cm(-1) for the CNF-AgNW micropatterns. The nanopaper and the conductive patterns both constitute random fibrous networks, and they display similar ductility and swelling behavior in water. Thus, the integrated conductive micropatterns can withstand folding, as well as wetting cycles. This stability of the micropatterns makes them useful in various devices based on nanocellulose substrates. As an example, an electroanalytical nanopaper device that operates in wet conditions is demonstrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available