4.5 Article

Escape of a Driven Quantum Josephson Circuit into Unconfined States

Journal

PHYSICAL REVIEW APPLIED
Volume 11, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.11.014030

Keywords

-

Funding

  1. ANR grant ENDURANCE
  2. EMERGENCES grant ENDURANCE of Ville de Paris
  3. ARO

Ask authors/readers for more resources

Josephson circuits have been ideal systems with which to study complex nonlinear dynamics that can lead to chaotic behavior and instabilities. More recently, Josephson circuits in the quantum regime, particularly in the presence of microwave drives, have demonstrated their ability to emulate a variety of Hamiltonians that are useful for the processing of quantum information. In this paper, we show that these drives lead to an instability that results in the escape of the circuit mode into states that are not confined by the Josephson cosine potential. We observe this escape in a ubiquitous circuit: a transmon embedded in a 3D cavity. When the transmon occupies these free-particle-like states, the circuit behaves as though the junction had been removed and all nonlinearities are lost. This work deepens our understanding of strongly driven Josephson circuits, which is important for fundamental and application perspectives, such as the engineering of Hamiltonians by parametric pumping.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available