4.4 Article

A highly efficient and multifunctional biomass supporting Ag, Ni, and Cu nanoparticles through wetness impregnation for environmental remediation

Journal

GREEN PROCESSING AND SYNTHESIS
Volume 8, Issue 1, Pages 309-319

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/gps-2018-0101

Keywords

Ag@TP; bactericidal activity; dyes reduction; nitrophenols reduction; turmeric powder

Ask authors/readers for more resources

Plant-based materials are reported to have a wide range of applications in the environmental and biomedical sectors. In this report, we present an economic and environmentally friendly supported turmeric powder (TP) biomass for the support of Ag, Ni and Cu nanoparticles (NPs) designated as Ag@TP, Ni@TP and Cu@TP. The in situ syntheses of the stated NPs were achieved in aqueous medium using NaBH4 as a reducing agent. The prepared NPs were applied for the degradation of o-nitrophenol (ONP), m-nitrophenol (MNP),p-nitrophenol (PNP), methyl orange (MO), Congo red (CR), rhodamine B (RB) and methylene blue (MB). Initially, Ag@TP, Ni@TP and Cu@TP were screened for the MO dye and antibacterial activity, where Ag@TP displayed the strongest catalytic activity for MO and bactericidal activities as compared to Ni@TP and Cu@TP. The quantity of metal ions adsorbed onto the TP was investigated by atomic absorption spectroscopy. The Ag@TP, Ni@TP and Cu@TP were characterized through X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, thermal gravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDS) and field emission scanning electron microscope (FESEM) analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available