4.5 Article

Assessing Transcriptome Quality in Patch-Seq Datasets

Journal

FRONTIERS IN MOLECULAR NEUROSCIENCE
Volume 11, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fnmol.2018.00363

Keywords

gene expression profiling; patch-damp techniques; sequencing data analysis; neurophysiology; meta-analysis; ion channels; cell types

Categories

Funding

  1. Kids Brain Health Network
  2. Canadian Institute for Health Research Post-doctoral Fellowship
  3. Natural Sciences and Engineering Research Council [RGPIN-2016-05991]
  4. CIHR [FDN-143206]
  5. NIH [MH111099]

Ask authors/readers for more resources

Patch-seq, combining patch-clamp electrophysiology with single-cell RNA-sequencing (scRNAseq), enables unprecedented access to a neuron's transcriptomic, electrophysiological, and morphological features. Here, we present a re-analysis of five patch-seq datasets, representing cells from ex vivo mouse brain slices and in vitro human stem-cell derived neurons. Our objective was to develop simple criteria to assess the quality of patch-seq derived single-cell transcriptomes. We evaluated patch-seq transcriptomes for the expression of marker genes of multiple cell types, benchmarking these against analogous profiles from cellular-dissociation based scRNAseq. We found an increased likelihood of off-target cell-type mRNA contamination in patch-seq cells from acute brain slices, likely due to the passage of the patch-pipette through the processes of adjacent cells. We also observed that patch-seq samples varied considerably in the amount of mRNA that could be extracted from each cell, strongly biasing the numbers of detectable genes. We developed a marker gene-based approach for scoring single-cell transcriptome quality post-hoc. Incorporating our quality metrics into downstream analyses improved the correspondence between gene expression and electrophysiological features. Our analysis suggests that technical confounds likely limit the interpretability of patch-seq based single-cell transcriptomes. However, we provide concrete recommendations for quality control steps that can be performed prior to costly RNA-sequencing to optimize the yield of high-quality samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available