4.6 Article

Photocatalytic Degradation of Estriol Using Iron-Doped TiO2 under High and Low UV Irradiation

Journal

CATALYSTS
Volume 8, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/catal8120625

Keywords

iron-doped TiO2; photocatalytic activity; low UV irradiation; hydroxyl radical; estriol

Funding

  1. ConTex postdoctoral program
  2. CONACYT [CB-2011/168285]
  3. University of Texas at Austin
  4. Desert Research Institute (DRI) at Nevada

Ask authors/readers for more resources

Iron-doped TiO2 nanoparticles (Fe-TiO2) were synthesized and photocatalitically investigated under high and low fluence values of UV radiation. The Fe-TiO2 physical characterization was performed using X-ray Powder Diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Diffuse Reflectance Spectroscopy (DRS), and X-ray Photoelectron Spectroscopy (XPS). The XPS evidenced that the ferric ion (Fe3+) was in the TiO2 lattice and unintentionally added co-dopants were also present because of the precursors of the synthetic method. The Fe3+ concentration played a key role in the photocatalytic generation of hydroxyl radicals ((OH)-O-center dot) and estriol (E3) degradation. Fe-TiO2 accomplished E3 degradation, and it was found that the catalyst with 0.3 at.% content of Fe (0.3 Fe-TiO2) enhanced the photocatalytic activity under low UV irradiation compared with TiO2 without intentionally added Fe (zero-iron TiO2) and Aeroxide (R) TiO2 P25. Furthermore, the enhanced photocatalytic activity of 0.3 Fe-TiO2 under low UV irradiation may have applications when radiation intensity must be controlled, as in medical applications, or when strong UV absorbing species are present in water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available