4.6 Article

Kinetic and Mechanistic Study on Catalytic Decomposition of Hydrogen Peroxide on Carbon-Nanodots/Graphitic Carbon Nitride Composite

Journal

CATALYSTS
Volume 8, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/catal8100445

Keywords

CDots/g-C3N4; H2O2; hydroxyl radical; Tris; advanced oxidation technology

Funding

  1. National Natural Science Foundation of China [21707108]
  2. Independent Innovation Foundation of Wuhan University of Technology [20411057, 20410962]

Ask authors/readers for more resources

The metal-free CDots/g-C3N4 composite, normally used as the photocatalyst in H-2 generation and organic degradation, can also be applied as an environmental catalyst by in-situ production of strong oxidant hydroxyl radical (HO center dot) via catalytic decomposition of hydrogen peroxide (H2O2) without light irradiation. In this work, CDots/g-C3N4 composite was synthesized via an electrochemical method preparing CDots followed by the thermal polymerization of urea. Transmission electron microscopy (TEM), X-Ray diffraction (XRD), Fourier Transform Infrared (FTIR), N-2 adsorption/desorption isotherm and pore width distribution were carried out for characterization. The intrinsic catalytic performance, including kinetics and thermodynamic, was studied in terms of catalytic decomposition of H2O2 without light irradiation. The second-order rate constant of the reaction was calculated to be (1.42 +/- 0.07) x 10(-9) m.s(-1) and the activation energy was calculated to be (29.05 +/- 0.80) kJ.mol(-1). Tris(hydroxymethyl) aminomethane (Tris) was selected to probe the produced HO. during the decomposing of H2O2 as well as to buffer the pH of the solution. The composite was shown to be base-catalyzed and the optimal performance was achieved at pH 8.0. A detailed mechanism involving the adsorb-catalyze double reaction site was proposed. Overall, CDots/g-C3N4 composite can be further applied in advanced oxidation technology in the presence of H2O2 and the instinct dynamics and the mechanism can be referred to further applications in related fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available