4.6 Article

PARP1 Suppresses the Transcription of PD-L1 by Poly(ADP-Ribosyl)ating STAT3

Journal

CANCER IMMUNOLOGY RESEARCH
Volume 7, Issue 1, Pages 136-149

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/2326-6066.CIR-18-0071

Keywords

-

Funding

  1. National Natural Science Foundation of China for Distinguished Young Scholar [81625024]
  2. National Natural Science Foundation of China [81773754, 81573428]

Ask authors/readers for more resources

Studies have pointed to a role of PARP1 in regulating gene expression through poly(ADP-ribosyl)ating, sequence-specific, DNA-binding transcription factors. However, few examples exist that link this role of PARP1 to the immunogenicity of cancer cells. Here, we report that PARP1 poly(ADP-ribosyl)ates STAT3 and subsequently promotes STAT3 dephosphorylation, resulting in reduced transcriptional activity of STAT3 and expression of PD-L1. In this study, we showed that PARP1 silencing or pharmacologic inhibition enhanced the transcription of PD-L1 in cancer cells, which was accompanied by the upregulation of PD-L1 protein expression, both in the cytoplasm and on the cell surface. This induction of PD-L1 was attenuated in the absence of the transcription factor STAT3. Cell-based studies indicated that PARP1 interacted directly with STAT3 and caused STAT3 poly(ADP-ribosyl)ation. STAT3's activation of PD-L1 transcription was abolished by the overexpression of wild-type PARP1 but not mutant PARP1, which lacks catalytic activity. PARP1 downregulation or catalytic inhibition enhanced the phosphorylation of STAT3, which was reversed by the ectopic expression of wild-type PARP1 but not by mutated PARP1. An inverse correlation between PARP1 and PD-L1 was also observed in clinical ovarian cancer samples. Overall, our study revealed PARP1-mediated poly(ADP-ribosyl)ation of STAT3 as a key step in inhibiting the transcription of PD-L1, and this mechanism exists in a variety of cancer cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available