4.6 Article

Evaluating the Self-Sensing Ability of Cement Mortars Manufactured with Graphene Nanoplatelets, Virgin or Recycled Carbon Fibers through Piezoresistivity Tests

Journal

SUSTAINABILITY
Volume 10, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/su10114013

Keywords

cement; mortar; carbon fiber; filler; graphene; self-sensing; piezoresistivity; recycling; mechanical properties

Funding

  1. Portuguese Foundation for Science and Technology (FCT) [FCT/UID/ECI/04450/2013]

Ask authors/readers for more resources

This paper presents the resistivity and piezoresistivity behavior of cement-based mortars manufactured with graphene nanoplatelet filler (GNP), virgin carbon fibers (VCF) and recycled carbon fibers (RCF). GNP was added at 4% of the cement weight, whereas two percentages of carbon fibers were chosen, namely 0.05% and 0.2% of the total volume. The combined effect of both filler and fibers was also investigated. Mortars were studied in terms of their mechanical properties (under flexure and compression) and electrical resistivity. Mortars with the lowest electrical resistivity values were also subjected to cyclic uniaxial compression to evaluate the variations in electrical resistivity as a function of strain. The results obtained show that mortars have piezoresistive behavior only if they are subjected to a prior drying process. In addition, dry specimens exhibit a high piezoresistivity only when loaded with 0.2 vol.% of VCF and 0.4 wt.% of GNP plus 0.2 vol.% RCF, with a quite reversible relation between their fractional change in resistivity (FCR) and compressive strain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available